AVR 00347

### Review Article

# New acquisitions in the development of anti-HIV agents\*

# Erik De Clercq

Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium (Received 27 January 1989; accepted 3 June 1989)

#### Introduction

When developing antiviral agents for the chemotherapy of AIDS, several events in the replicative cycle of the human immunodeficiency virus (HIV) could be considered as targets for chemotherapeutic attack, i.e. virus attachment to the cells, fusion of the viral envelope with the cellular membrane, penetration of the viral capsid into the cell, uncoating of the viral capsid, transcription of the viral RNA genome to proviral DNA (which is accompanied by degradation of the viral RNA), circularization and integration of the proviral DNA into the cellular genome, replication of the proviral DNA (concomitant with the replication of cellular DNA), transcription of the proviral DNA to mRNA, translation of the latter to viral precursor proteins, which are then modified by myristylation, proteolytic cleavage and glycosylation assembly and, finally, budding of the virus particles (De Clercq, 1989a).

Most of these events require the help of specific proteins encoded by the viral genome. Virus adsorption requires a specific interaction between the viral glycoprotein gp120 and the cellular CD4 receptor. The transcription of RNA to DNA is catalyzed by the virion-associated reverse transcriptase (RT), and the remaining RNA template is degraded by ribonuclease H. The integration of proviral DNA in the cellular genome is secured by another viral enzyme, called integrase or endonuclease (end). Proteolytic cleavage of the viral precursor proteins is effected by the viral protease (pro), which is autocatalytically removed from the pro-RT-end precursor. Furthermore, virus replication is under control of a set of regula-

Correspondence to: E. de Clercq, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.

<sup>\*</sup>Originally presented at the Second International Conference on Antiviral Research, Williamsburg, Virginia, U.S.A. 10-14 April 1988.

tory genes which either stimulate expression of viral proteins (i.e. tat, encoded by the trans-activator gene), increase the infectivity of the virus particles (i.e. vif, encoded by the virion infectivity gene) or suppress expression of viral proteins (i.e. nef, a negative regulation factor and vpu, also a negative regulatory factor). Another regulatory protein (rev) positively regulates expression of virion proteins but negatively regulates expression of regulatory genes (including the rev gene itself). For a review of the processes involved in the replication and pathogenesis of HIV, see Haseltine (1988).

For a number of the target events, such as penetration and uncoating of the viral capsids, integration of the proviral DNA into the cellular genome, and virion assembly, and for several of the target proteins, such as end, pro, tat and rev, no specific inhibitors have so far been identified. For various compounds which have been claimed to inhibit HIV replication (i.e. penicillamine D, amphotericin B methyl ester, oxetanocin, hypericin, somatostatin, ribavirin, papaverine), the mode of their purported anti-HIV action is unknown or at least, uncertain. For other compounds, the mode of action is well established, i.e. phosphonoformate interferes directly with the viral RT; 2',3'-dideoxynucleoside analogues do so after they have been phosphorylated intracellularly to their 5'-triphosphates; sulfated polysaccharides block virus attachment to the cells; suramin inhibits both viral RT and virus binding to the cells; castanospermine, deoxynojirimycin and other glycosylation inhibitors reduce infectivity of the virus particles; and anti-sense oligonucleotides may interfere with both transcription and translation of the viral genome (for previous reviews on chemotherapeutic approaches to the treatment of AIDS, see De Clercq, 1986, 1987a,b, 1988).

This review will be focused on the compounds that were synthesized and/or investigated in our own research unit. According to their chemical structure these compounds could be divided into the following four categories: I, anionic substances; II, dideoxynucleoside analogues; III, phosphonylmethoxyethylpurine derivatives; and IV, sulfated polysaccharides. Compounds II and III are assumed to interact with the reverse transcriptase step, compounds IV with virus adsorption, and compounds I with either reverse transcription or virus-cell binding, or both (although for some of the compounds which have been classified under I the precise mechanism of action has not been elucidated).

#### **Anionic substances**

The first compound found to inhibit HIV at a concentration that was not toxic to the host cells was suramin (Mitsuya et al., 1984; De Clercq, 1987c). Suramin (Fig. 1A) was studied for its activity against HIV because it had previously been shown to suppress the reverse transcriptase activity associated with murine and avian retroviruses (De Clercq, 1979). Suramin is also active in suppressing retrovirus propagation in vivo (Ruprecht et al., 1985), and its anti-HIV activity has been confirmed in several cell systems (Balzarini et al., 1986a,b; Baba et al., 1988c). Suramin is inhibitory to HIV-1 RT activity at about the same concentration (ID<sub>50</sub>:

Fig. 1. Anionic compounds: sulfonates: Suramin (A), Evans Blue (B), Fuchsin Acid (F) and carboxylates: Glycyrrhizin (C), Taurolithocholic acid (3-sulphate) (D), and (E) Aurintricarboxylic acid (ATA).

33  $\mu$ M) as that required to inhibit HIV-1 replication in MT-4 cells (ED<sub>50</sub>: 32  $\mu$ M) (Baba et al., 1988c) (Table 1). Also, suramin partially blocks HIV-1 binding to the cells (Schols et al., 1989a). This means that the anti-HIV-1 activity of suramin is based on a dual mode of action, i.e. inhibition of virus adsorption and inhibition of RT activity (Fig. 5).

In addition to suramin, several other sulfonated compounds, i.e. Evans Blue (Fig. 1B), have proved effective against HIV-1 replication at non-toxic concentrations (Balzarini et al., 1986a,b). Evans Blue, like suramin may owe its anti-HIV activity partly to inhibition of RT activity and partly to inhibition of virus adsorption (Schols et al., 1989a).

Glycyrrhizin (also referred to as glycyrrhizic acid, glycyrrhizinic acid and glycyrrhetinic acid glycoside) (Fig. 1C) has been known for its antiviral activity since

TABLE 1
Anti-HIV-1 activity of selected antiviral compounds in MT-4 cell cultures

| Compound                          | ED <sub>50</sub> <sup>a</sup> | CD <sub>50</sub> <sup>b</sup> | Selectivity <sup>c</sup> index | References                 |
|-----------------------------------|-------------------------------|-------------------------------|--------------------------------|----------------------------|
| I. Anionic substances             |                               |                               |                                |                            |
| Suramin                           | 32                            | 625                           | 20                             | Baba et al., 1988c         |
| Evans Blue                        | 10                            | > 100                         | > 10                           | Balzarini et al.,<br>1986b |
| Glycyrrhizin                      | 100                           | 2400                          | 24                             | Ito et al., 1987b          |
| Taurolithocholic acid (3-sulfate) | 137                           | 1000                          | > 7.3                          | Baba et al., 1989a         |
| Aurintricarboxylic acid           |                               | 590                           | 118                            | Baba et al., 1988c         |
| Fuchsin acid                      | 42                            | > 3125                        | > 74                           | Baba et al., 1988c         |
| II. Deoxynucleoside ar            | nalogues                      |                               |                                |                            |
| ddThd                             | 6                             | > 625                         | > 104                          | Balzarini et al.,<br>1988a |
|                                   | 0.2                           | > 625                         | > 3125                         | Baba et al., 1987c         |
| ddCyd (DDC)                       | 0.06                          | 37                            | 616                            | Pauwels et al., 1987       |
|                                   | 0.3                           | 356                           | 1187                           | Pauwels et al.,<br>1988a   |
| ddAdo (DDA)                       | 6.4                           | 890                           | 139                            | Baba et al., 1987a         |
| ddGuo                             | 7.6                           | 486                           | 64                             | Baba et al., 1987a         |
| ddIno (DDI)                       | 10                            | > 500                         | > 50                           | De Clercq et al.,<br>1989  |
| ddDAPR                            | 3.6                           | 404                           | 112                            | Balzarini et al.,<br>1987c |
| ddeThd (D4T)                      | 0.01                          | 1.2                           | 120                            | Baba et al., 1987c         |
| ddeCyd (D4C)                      | 0.13                          | 7.9                           | 61                             | Baba et al., 1987c         |
| AzddUrd                           | 0.43                          | 39                            | 90                             | Balzarini et al.,<br>1989c |
|                                   | 0.36                          | 244                           | 677                            | Balzarini et al.,<br>1988a |
| AzddThd (AZT)                     | 0.006                         | 3.5                           | 583                            | Pauwels et al., 1987       |
|                                   | 0.003                         | 4.8                           | 1603                           | Balzarini et al.,<br>1989c |
|                                   | 0.004                         | 20                            | 5000                           | Balzarini et al.,<br>1988a |
| AzddClUrd                         | 0.72                          | 213                           | 296                            | Balzarini et al.,<br>1989c |
| AzddMeCyd                         | 1.8                           | 1000                          | 555                            | Herdewijn et al.,<br>1988  |
| AzddMe <sub>2</sub> Cyd           | 17                            | > 1000                        | > 58                           | Herdewijn et al.,<br>1988  |
| AzddGuo                           | 1.4                           | 190                           | 136                            | Baba et al., 1987a         |
| AzddDAPR                          | 0.3                           | 44                            | 147                            | Balzarini et al.,<br>1988b |
| FddUrd                            | 0.06                          | 1.1                           | 25                             | Balzarini et al.,<br>1989c |
|                                   | 0.04                          | 16                            | 400                            | Balzarini et al.,<br>1988a |
| FddThd                            | 0.001                         | 0.197                         | 197                            | Balzarini et al.,<br>1988a |

| FddClUrd                                      | 0.38  | 535    | 1408    | Balzarini et al.,<br>1989a |  |  |  |  |
|-----------------------------------------------|-------|--------|---------|----------------------------|--|--|--|--|
| FddBrUrd                                      | 0.41  | 24     | 59      | Balzarini et al.,<br>1989a |  |  |  |  |
| FddGuo                                        | 2.4   | 237    | 96      | Balzarini et al.,<br>1988b |  |  |  |  |
| FddDAPR                                       | 4.5   | 360    | 80      | Balzarini et al.,<br>1988b |  |  |  |  |
| III. Phosphonylmethoxyethylpurine derivatives |       |        |         |                            |  |  |  |  |
| PMEA                                          | 2.0   | 67     | 33      | Pauwels et al.,<br>1988b   |  |  |  |  |
| PMEMAP                                        | 45    | > 1250 | > 28    | Pauwels et al.,<br>1988b   |  |  |  |  |
| PMEDAP                                        | 1.0   | 18     | 18      | Pauwels et al.,<br>1988b   |  |  |  |  |
| IV. Sulfated polysaccharides                  |       |        |         |                            |  |  |  |  |
| Heparin                                       | 0.58  | > 2500 | > 4300  | Baba et al., 1988a         |  |  |  |  |
| Dextran sulfate                               | 0.3   | > 2500 | > 8300  | Baba et al., 1988a         |  |  |  |  |
| Pentosan polysulfate                          | 0.19  | > 2500 | > 13150 | Baba et al., 1988a         |  |  |  |  |
| λ-carrageenan                                 | 0.54  | > 625  | > 1150  | Baba et al., 1988a         |  |  |  |  |
| Mannan sulfate                                | 1.2   | > 2500 | > 2000  | Ito et al., 1989a          |  |  |  |  |
| Dermatan sulfate                              | > 625 | > 2500 | >< 4    | Baba et al., 1988a         |  |  |  |  |
| Supersulfated heparin                         | 0.38  | > 625  | > 1650  | Unpublished data,<br>1988  |  |  |  |  |
| Supersulfated dermatar sulfate                | n 0.4 | > 625  | > 1560  | Unpublished data,<br>1988  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Fifty percent effective dose, based on the inhibition of HIV-1-induced cytopathogenicity in MT-4 cells [assessed by the MTT method (Pauwels et al., 1988a)].

the report of Pompei et al. (1979). It also inhibits HIV-1 replication at a concentration (ED $_{50}$ : 0.1 mM) that is well below its cytotoxic threshold (selectivity index:24) (Ito et al., 1987b) (Table 1). Glycyrrhizin may owe its anti-HIV-1 activity, at least in part, to an inhibitory effect on virus-cell binding (Ito et al., 1989b). Glycyrrhizin also reduces protein kinase C (PKC) activity in the cells, but it is not clear to what extent this reduction in PKC activity contributes to the anti-HIV-1 activity of glycyrrhizin.

Fusidic acid, an antibiotic with a steroid-like structure somewhat similar to that of glycyrrhizin, has also been accredited with anti-HIV activity (Faber et al., 1987). However, we have been unable to confirm this activity: fusidic acid did not protect MT-4 cells against the cytopathogenicity of HIV-1 at the highest concentration that was non-toxic to the cells (25 µg/ml) (M. Baba and E. De Clercq, unpublished

<sup>&</sup>lt;sup>b</sup>Fifty percent cytotoxic dose, based on the reduction of the viability of mock-infected MT-4 cells [assessed by the MTT method (Pauwels et al., 1988a)].

<sup>&</sup>lt;sup>c</sup>Ratio of CD<sub>50</sub> to ED<sub>50</sub>.

ED $_{50}$  and CD $_{50}$  values of anionic substances, deoxynucleoside analogues and phosphonylmethoxyethylpurine derivatives are expressed in  $\mu M$ , whereas ED $_{50}$  and CD $_{50}$  values of sulfated polysaccharides are expressed in  $\mu g/ml$ .

data, 1987). The antiviral effects that have been accredited to fusidic acid must be attributed to toxicity to host cells, a conclusion also reached by Richman et al. (1988).

Following fusidic acid, bile acids (salts) were also accredited with anti-HIV properties (Lloyd et al., 1988): an inhibitory effect on the viability of HIV-1-infected CEM cells was noted at a concentration of 250 µg/ml, and no attempts were made to identify the active congeners in the bile acid mixture. In fact, the mixture was said to contain 60% sodium cholate and 40% deoxycholate (Lloyd et al., 1988). With neither cholate nor deoxycholate could we demonstrate a selective inhibitory effect on HIV-1 replication in MT-4 cells (Baba et al., 1989a). Of the large variety of bile acids that we evaluated for anti-HIV-1 activity (Baba et al., 1989a), only the following inhibited HIV-1 replication at subtoxic concentrations: taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate (Fig. 1D, Table 1) and glycolithocholic acid 3-sulfate. The anti-HIV-1 activity of these cholic acid derivatives (except for taurolithocholic acid) could be attributed in part to inhibition of virus adsorption and inhibition of RT activity.

Another anionic compound that has been identified as a selective anti-HIV agent is the triphenylmethane derivative ATA (aurintricarboxylic acid) (Fig. 1E) (Balzarini et al., 1986b). This compound has since long been recognized as a reverse transcriptase inhibitor (Givens and Manly, 1976). ATA inhibits HIV-1 RT activity at about the same concentration (ID<sub>50</sub>: 5.2 µM) as that required to inhibit HIV-1 replication in MT-4 cells (ED<sub>50</sub>:5.0 μM) (Baba et al., 1988c) (Table 1). The carboxylic acid groups of ATA are essential for its anti-HIV activity since the noncarboxylated parent compound aurin has no selective inhibitory effect on the replication of HIV. Of particular importance is the observation that ATA specifically interacts with CD4, and, consequently, prevents the attachment of HIV-1 particles to their cellular receptor (Schols et al., 1989b). ATA prevents binding of OKT4A/Leu-3a, but not other monoclonal antibody, to the cells. The effect was seen within 1 min at an ATA concentration of 10 µM in various T4+ cells. It was dose-dependent and reversible. No other chemical has ever been reported to possess a specific affinity for CD4. What remains to be assessed is the exact binding site of ATA at the CD4 molecule, as well as the structural requirements that ATA has to fulfill to interact with CD4.

Fuchsin acid, which is structurally related to ATA (Fig. 1F), also behaves as a selective inhibitor of HIV-1 and HIV-2 replication (Baba et al., 1988c). Unlike ATA, however, fuchsin acid does not interfere with the binding of HIV to the cells. Also, fuchsin is only weakly inhibitory to RT activity. The basis for its high selectivity as an inhibitor of HIV replication (Table 1) remains therefore subject of further study.

## Dideoxynucleoside analogues

Azidothymidine (3'-azido-2',3'-dideoxythymidine, AzddThd, AZT) was the first among the 2',3'-dideoxynucleoside (ddN) analogues shown to be a potent and selective inhibitor of HIV-1 replication in vitro (Mitsuya et al., 1985). Following AZT, various other ddN analogues, i.e. ddCyd (DDC), ddAdo (DDA) and ddIno (DDI), were reported to inhibit HIV-1 with a potency and selectivity similar to that of AZT (Mitsuya and Broder, 1986). Further search for new ddN analogues has produced a wealth of active compounds: i.e. the 2',3'-didehydro derivatives of ddCyd and ddThd, termed D4C and D4T, respectively (Balzarini et al., 1986c, 1987b; Baba et al., 1987c; Lin et al., 1984a,b; Hamamoto et al., 1987); 3'-azido-2',3'-dideoxyuridine (AzddWeCyd), 3'-azido-2',3'-dideoxy-5-methylcytidine (AzddMeCyd), the N<sup>4</sup>-methylated derivative of AzddMeCyd (AzddMe<sub>2</sub>Cyd) and the N<sup>4</sup>-hydroxylated derivative of AzddMeCyd (Herdewijn et al., 1988; Balzarini et al., 1988a); 3'-fluoro-2',3'-dideoxythymidine (FddThd) (Herdewijn et al., 1987; Balzarini et al., 1988a) and the 3'-azido and 3'-fluoro derivatives of 2',3'-dideoxy-5-chlorouridine

Fig. 2. Dideoxynucleoside analogues; purine base: adenine, guanine, hypoxanthine or 2,6-diaminopurine; pyrimidine base: uracil, thymine, cytosine, 5-methylcytosine, N<sup>4</sup>,5-dimethylcytosine, N<sup>4</sup>-hydroxyl-5-methylcytosine, 5-fluorocytosine, 5-chlorouracil, 5-bromouracil or 5-iodouracil; sugar moiety: 2,3-dideoxyribose, 2,3-didehydro-2,3-dideoxyribose, 3-azido-2,3-dideoxyribose or 3-fluoro-2,3-dideoxyribose.

(AzddClUrd, FddClUrd) (Balzarini et al., 1989c,d; Van Aerschot et al., 1989); the 2',3'-dideoxyriboside of 2,6-diaminopurine (Balzarini et al., 1987c,d) and the 3'azido and 3'-fluoro derivatives thereof (AzddDAPR, FddDAPR) (Balzarini et al., 1988b); and, finally, the 3'-azido and 3'-fluoro derivatives of 2',3'-dideoxyguanosine (AzddGuo, FddGuo) (Baba et al., 1987a; Balzarini et al., 1988b). The structural formulae of these compounds are presented in Fig. 2. Their ED<sub>50</sub> and CD<sub>50</sub> values, as recorded from comparative studies in MT-4 cells, are listed in Table 1. From these studies it would appear that several ddN analogues, in addition to those that have already been the subject of clinical trials in AIDS patients (i.e. AZT, DDC, DDA and DDI) yield great promise as candidate anti-AIDS drugs, e.g. D4C, D4T, AzddUrd, AzddDAPR and FddClUrd. Their selective and potent anti-HIV activity has been demonstrated in several laboratories (Balzarini et al., 1986c; Baba et al., 1987c; Lin et al., 1987a,b, 1988; Hamamoto et al., 1987; Bazin et al., 1988; Mansuri et al., 1989). In fact, similar results to those obtained in MT-4 cells may be expected if the anti-HIV activity of the compounds would be determined in peripheral blood mononuclear (PBM) cells (Chu et al., 1988).

All ddN analogues may be assumed to act in a similar fashion as AZT (Furman et al., 1986), which means that they must be phosphorylated intracellularly to their 5'-triphosphate derivatives before they can interact with their target enzyme, the HIV-associated reverse transcriptase (Fig. 5). As a rule, the ddN triphosphates (ddNTPs) have a greater affinity for the HIV RT than for the cellular DNA polymerase  $\alpha$ , and for HIV RT they also have affinities some 50-fold greater than those of the corresponding 2'-deoxynucleoside (dN) 5'-triphosphates (dNTPs) (Hao et al., 1988). At the RT level, the ddNTPs may act as either competitive inhibitors, i.e. prevent the incorporation of the natural substrates (dNTPs), or alternate substrates, and thus be incorporated (as ddNMP) in the growing DNA chain. This incorporation must lead to termination of the DNA chain, since the ddNMPs do not offer the 3'-hydroxyl groups that are necessary for chain elongation.

The differences that have been noted in the anti-HIV activity of different ddN analogues could be attributed in principle to (i) differences in the rate (or extent) by which they are phosphorylated to their 5'-triphosphates, (ii) differences in the affinity of these 5'-triphosphates for the HIV reverse transcriptase, or (iii) differences in their abilities to influence pool sizes of the substrates (dNTPs) that they ultimately compete with. Increasing experimental evidence suggests that the relative ability by which the 2',3'-dideoxynucleosides generate 5'-triphosphates intracellularly (thus, factor i) correlates much more closely than do the other two factors (ii and iii) (Hao et al., 1988). The importance of the intracellular phosphorylation of the ddN analogues (i.e. AZT and DDC) in the anti-HIV activity they accomplish was clearly demonstrated by Balzarini et al. (1988c). The ddN analogues may differ considerably in the efficiency by which they are phosphorylated by the cells; i.e., in MT-4 cells D4T is phosphorylated to its 5'-monophosphate at a 300- to 600-fold lower extent than AZT (Balzarini et al., 1989a). The differential phosphorylation of AZT and D4T may be the principal, if not the sole, factor responsible for the differential anti-HIV activity of these compounds, since in their triphosphate form they are equipotent against HIV reverse transcriptase.

Also, combination of ddN analogues with other compounds which increase the efficiency by which the ddNs are converted to the corresponding ddNTPs may be expected to increase the anti-HIV activity of the ddNs. Thus, enhancement of the phosphorylation process may form a rational basis for the design of combination protocols. The potentiating effect of ribavirin on the anti-HIV activity of the purine 2',3'-dideoxynucleosides (i.e. ddAdo, ddGuo) (Baba et al., 1987b) and the potentiating effect of thymidine (dThd) on the anti-HIV activity of DDC (Balzarini et al., 1987a) could readily be attributed to an enhanced phosphorylation of the ddN analogues.

The intermediary products, i.e. 5'-monophosphates, formed during the phosphorylation process of the ddNs, may themselves act as antimetabolites and thus contribute to the cytotoxicity of the compounds. Cells that have been exposed to AZT accumulate AZT 5'-monophosphate, presumably because the latter inhibits dTMP kinase that is needed for its further phosphorylation to the 5'-diphosphate. Since dTMP kinase is also required for the salvage of dThd, a blockage at the dTMP kinase level may also be expected to reduce the supply of dTDP, dTTP, and, hence suppress cellular DNA synthesis. Mutatis mutandis, those ddN analogues that do not act as inhibitors of dTMP kinase, and, thus, are not accumulated as their 5'-monophosphates, may be free of cytotoxicity which would otherwise have ensued from a reduced supply of dTTP. Examples of such ddN analogues are D4T and FddClUrd.

## Phosphonylmethoxyethylpurine derivatives

Recently, a new class of antiviral agents has been identified which exhibit a broad-spectrum activity against a wide range of DNA viruses, including adeno-, herpes-and poxviruses, and retroviruses (De Clercq et al., 1987). These compounds contain an acyclic nucleoside part (as in acyclovir and ganciclovir) linked to a phosphonate group (as in phosphonoformate). The prototypes of this class of compounds are (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] (De Clercq et al., 1986), 9-(2-phosphonylmethoxyethyl)adenine (PMEA) (Pauwels et al., 1988b) and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] (Snoeck et al., 1988). Also the 3-hydroxy-2-phosphonylmethoxypropyl derivative of guanine is a potent broad-spectrum anti-DNA virus agent (De Clercq et al., 1987), which has been confirmed by other investigators (Terry et al., 1988).

The mechanism of action of (S)-HPMPA appears to be based upon a specific inhibitory effect on viral DNA synthesis (Votruba et al., 1987). The compound is as such taken up by the cells and subsequently converted to its monophosphoryl and diphosphoryl derivatives. The latter would represent the active form of the molecule, i.e. the form under which it interacts with the target enzyme, the viral DNA polymerase. This mode of action has also been proposed for (R,S)-HPMPG (Terry et al., 1988) and may be applicable to the other phosphonylmethoxyalkyl derivatives as well.

Of the phosphonylmethoxyalkylpurine and -pyrimidine derivatives, only the

Fig. 3. Phosphonylmethoxyethylpurine derivatives: *PMEA* [9-(2-phosphonylmethoxyethyl)adenine], *PMEMAP* [9-(2-phosphonylmethoxyethyl)-2-monoaminopurine] and *PMEDAP* [9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine].

phosphonylmethoxyethylpurine derivatives, i.e. PMEA (Fig. 3) and the closely related 2-monoaminopurine (PMEMAP) and 2,6-diaminopurine (PMEDAP) analogues, have been found effective against HIV (Pauwels et al., 1988b). However, PMEA, PMEMAP and PMEDAP are less potent as inhibitors of HIV replication in vitro than are AZT and most other 2',3'-dideoxynucleoside analogues (Table 1). Yet, in vivo PMEA suppressed tumor formation in newborn mice inoculated with Moloney murine sarcoma virus (MSV) at a dose of 1-5 mg/kg/day, that is 25fold lower than the dose at which AZT achieved a comparable inhibitory effect on MSV-induced tumor formation (Balzarini et al., 1989b). PMEA has also been evaluated for its antiviral activity in rhesus monkeys infected with simian immunodeficiency virus (SIV) and cats infected with feline immunodeficiency virus (FIV). From these studies (done in collaboration with H. Schellekens, TNO Primate Center, Rijswijk, The Netherlands) and M.C. Horzinek (Veterinary Faculty, Utrecht University, The Netherlands), PMEA appeared to be effective in suppressing SIV and FIV replication when administered intramuscularly at a dose (10 mg/kg/day) that was well tolerated by both monkeys and cats. Initial studies also indicate that PMEA would be effective in suppressing the clinical symptoms of feline AIDS in cats.

#### Sulfated polysaccharides

Based on previous experience with polyanionic substances (De Somer et al., 1968a,b), virus adsorption was suggested as a possible target and polyvinyl sulfate, dextran sulfate and other polyanions were suggested as potential chemotherapeutic agents against AIDS (De Clercq, 1986). This premise was borne out when Ito et al. (1987a) and Ueno and Kuno (1987) demonstrated that dextran sulfate and heparin inhibited HIV-1 replication in MT-4 cells at a concentration which was far below the cytotoxicity threshold. Various sulfated polysaccharides (Fig. 4) are now known to inhibit HIV-1 replication in MT-4 cells within the concentration range of 0.1–1 μg/ml, while not being toxic to the host cells at concentrations up to 2.5 mg/ml, thus achieving a selectivity index of 4 orders of magnitude (Table 1). For

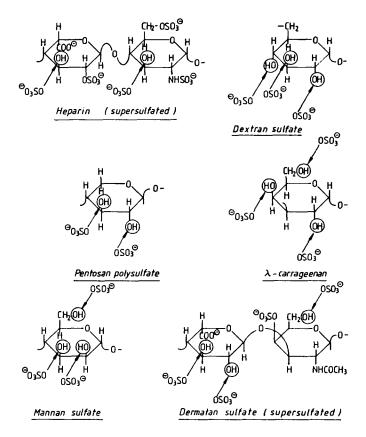



Fig. 4. Sulfated polysaccharides: repeating disaccharide or monosaccharide units (with their putative linkages). Heparin consists of repeating units of L-iduronic acid (of D-glucuronic acid)- $(1 \rightarrow 4)$ -D-glucosamine, with sulfamide at C-2 of D-glucosamine and sulfate groups at C-6 of D-glucosamine and C-2 of L-iduronic acid. Additional sulfate groups can be implanted at C-2 of both D-glucosamine and L-iduronic acid, which leads to the formation of 'supersulfated' heparin. Dextran sulfate contains a backbone of  $\alpha$ -D-glucose units linked predominantly  $1 \rightarrow 6$ , with at an average two, and maximally three, sulfate groups per glucose moiety. Pentosan polysulfate can be considered as an oligomer of xylopyranose with at an average 1.8 sulfate groups per monomer. Carrageenans (i.e.  $\lambda$ -carrageenan) are primarily composed of  $\alpha$ -D-galactose sulfate esters. Mannan sulfate contains a backbone of  $\alpha$ -D-mannose units linked  $1 \rightarrow 4$ , with maximally three sulfate groups per mannose moiety. Dermatan sulfate (also called chondroitin sulfate B) consists of repeating units of L-iduronic acid- $(1 \rightarrow 3)$ -D-N-acetylgalactosamine with a sulfate group at C-4 of D-N-acetylgalactosamine. Additional sulfate groups can be implanted at C-6 of D-N-acetylgalactosamine and C-2 and C-3 of L-iduronic acid, which leads to the formation of 'supersulfated' dermatan sulfate.

a review on the anti-HIV activity of sulfated polysaccharides, see De Clercq (1989b).

The anti-HIV activity of the sulfated polysaccharides is critically dependent on the sulfate content: two sulfate groups per monosaccharide are required to accomplish full anti-HIV activity. Dermatan sulfate and chondroitin sulfate which contain only one sulfate group per disaccharide are virtually inactive against HIV (Baba et al., 1988a). If, however, dermatan sulfate is 'supersulfated', so that it acquires at least two sulfate groups per monosaccharide, it becomes as active as dextran sulfate (M. Baba and E. De Clercq, unpublished data, 1988). Likewise, 'supersulfation' increases the anti-HIV-1 potency of heparin.

In addition to the degree of sulfation (or sulfate content), the molecular weight also plays an important role in the anti-HIV activity of sulfated polysaccharides: for dextran sulfate, the anti-HIV-1 activity increases with the molecular weight increasing from 1–10 kDa and then levels off (Baba et al., 1988d). With heparin fragments, no anti-HIV-1 activity is noted if the molecular weight of the fragment falls below the 5-kDa threshold (Baba et al., 1988b).

The anti-HIV activity of the sulfated polysaccharides resides primarily, if not solely, in the inhibition of virus adsorption to the outer cell membrane (Fig. 5). This has been demonstrated by several techniques based on either cell-associated radioactivity following exposure of the cells to radiolabeled HIV-1 virions (Baba et al., 1988a,b; Mitsuya et al., 1988), flow cytometric measurements of cell-associated immunofluorescence (Schols et al., 1989a) or radioimmunoassay of cell-bound virus (Nakashima et al., 1989). Sulfated polysaccharides, i.e. dextran sul-

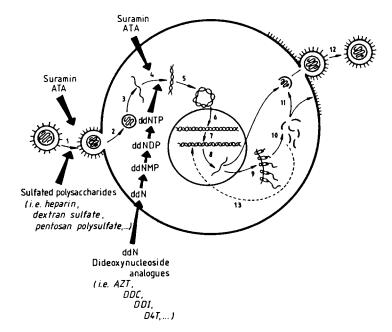



Fig. 5. Major steps in the replicative cycle of HIV: 1. adsorption; 2. penetration; 3. uncoating; 4. reverse transcription; 5. circularization; 6. integration; 7. replication; 8. transcription; 9. translation; 10. post-translational modification (i.e. proteolytic cleavage, glycosylation, myristylation); 11. assembly; 12. budding; 13. positive regulation (transactivation) or negative regulation of viral protein expression. Virus adsorption to the cell membrane serves as target for suramin, ATA and sulfated polysaccharides; reverse transcription serves as target for suramin, ATA and 2',3'-dideoxynucleoside (ddN) analogues. To interact with the reverse transcriptase, the latter must be phosphorylated intracellularly to their 5'-triphosphates (ddNTP) via their 5'-monophosphates (ddNMP) and 5'-diphosphates (ddNDP).

fate, are also inhibitory to HIV-1 reverse transcriptase (Baba et al., 1988a), but this inhibitory effect is achieved only at concentrations which are about 100-fold higher than those required to inhibit HIV-1 replication or virus-cell binding. It is unlikely, therefore, that inhibition of HIV RT contributes to the inhibitory effect of the sulfated polysaccharides on HIV replication.

If the sulfated polysaccharides owe their anti-HIV activity to an inhibitory effect on virus-cell binding, they might have a differential activity against HIV-1 and HIV-2. Indeed, virus-cell binding is based on the interaction of the cellular CD4 receptor with the viral gp120 glycoprotein, and, as the HIV-1 and HIV-2 gp120 glycoproteins differ markedly from one another, their interaction with the CD4 receptor may also show differential sensitivity to the inhibitory effects of the sulfated polysaccharides. Our recent experiments have shown that, whereas AZT is equally effective against HIV-1 and HIV-2, heparin is significantly less inhibitory to HIV-2 than HIV-1, and dextran sulfate and pentosan polysulfate are significantly more inhibitory to HIV-2 than HIV-1 (Pauwels et al., 1989). In fact, pentosan polysulfate is active against HIV-2 in MT-4 cells at a concentration as low as 5 ng/ml (Pauwels et al., 1989). The HIV-2/MT-4 cell system could be used as a bioassay for the detection of pentosan polysulfate - which basically has the same structure as the polysulfated polyxylan HOE/BAY 946 recently described by Biesert et al. (1988) - in biological specimens, i.e. plasma obtained from patients treated with pentosan polysulfate. It should be pointed out, however, that Biesert et al. (1988) were unable 'to find any significant differences in the antiviral activity of HOE/BAY 946 against HIV-1 and HIV-2', which is at variance with the much higher inhibitory activity of pentosan polysulfate against HIV-2 than HIV-1 in our experiments.

The major side effect that has to be taken into account if the sulfated polysaccharides would be used in the therapy or prophylaxis of AIDS is their anticoagulant activity, which for many years has been the principal reason for the medical use of heparin. From a comparative evaluation of several sulfated polysaccharides (Baba et al., 1988a) it has appeared, however, that anti-HIV activity and anticoagulant activity are not correlated. With dextran sulfate, pentosan polysulfate and  $\lambda$ -carrageenan anti-HIV-1 activity is obtained at concentrations which are 200- to 400-fold below the anticoagulant threshold (1 unit) (De Clercq, 1989b). Further work along these lines has led to the development of heparin and glycosaminoglycan derivatives which have potent anti-HIV activity, yet negligible anti-thrombin activity (Baba et al., 1989b) The sulfated bacterial glycosaminoglycan (Org 31581) and chemically degraded heparin (Org 31733) inhibit HIV-1 in MT-4 cells at concentrations (0.67 and 0.52 µg/ml), respectively) which are comparable to that of standard heparin (0.89 µg/ml). Yet, Org 31581 and Org 31733 have minimal antithrombin activity (0.8 and 0.7 U/mg, respectively), as compared to heparin (141 U/mg).

A particularly interesting feature of the sulfated polysaccharides is that they are capable of blocking cell fusion (syncytium formation) between HIV-infected cells and uninfected cells. We have recently demonstrated that when chronically HIV-infected HUT-78 cells are mixed with uninfected MOLT-4 cells, the HUT-78 cells

fused with the MOLT-4 cells, and subsequently the MOLT-4 cells disappeared from the coculture. This specific destruction of the 'by-stander' CD4+ MOLT-4 cells by the 'agressor' HIV-infected HUT-78 cells was completed within 24 h of coculturing the cells (Schols et al., 1989c). This phenomenon of selective killing of innocent CD4+ cells by the HIV-infected 'killer' cells could be visualized by a flow cytometric method, using specific monoclonal antibodies to antigens that were expressed on either HUT-78 cells or MOLT-4 cells. Based on these observations one could easily envisage how a single HIV-infected cell, without producing any virus particles, may eliminate hundreds or thousands of innocent by-stander cells, and hence lead to the depletion of CD4+ T-lymphocytes that is pathognomonic for AIDS. In this perspective, it is of utmost relevance that sulfated polysaccharides and sulfated polymers in general, but not dideoxynucleoside analogues such as AZT, are able to block fusion between HIV-infected and uninfected cells (M. Baba, D. Schols, R. Pauwels and E. De Clercq, unpublished data, 1989). This particular property of the sulfated polymers would give them a substantial therapeutic edge over AZT and other dideoxynucleosides.

#### Conclusion

An effective chemotherapy for AIDS is a major task requiring the combined forces of several disciplines including chemistry, biochemistry, molecular biology, pharmacology, toxicology, clinical medicine, patent law, business, economics and drug regulation. Quite schematically, the process needed to develop an effective anti-AIDS drug can be divided into ten stages: 1, chemical synthesis of the compound; 2, evaluation of its in vitro activity against HIV; 3, evaluation of its in vivo activity against retrovirus infections in animal models; 4, study of its mechanism of action; 5, study of its pharmacokinetic profile (absorption, distribution, metabolism, elimination); 6, toxicological examination; 7, clinical studies in AIDS patients; 8, patent application and granting; 9, evaluation of market value; and 10, approval by the drug regulatory agencies.

Except for AZT, no other compound has gone through all 10 stages. The various compounds that have been addressed in this review are in one or another stage of their development, and the prospects that at least a few of these compounds will reach the finish, that is the drug market, look bright. Considering the increasing number of compounds which have recently been found effective against HIV in cell culture systems, the crucial factor determining their ultimate success as an anti-AIDS drug will be unequivocal proof of their efficacy in patients. Such efficacy can be demonstrated only by rigorously controlled clinical trials, and, because of compliance problems with the patients in taking the prescribed medicine, proper clinical studies have proven increasingly difficult.

At present, AZT still stands as the only anti-AIDS drug that has been licensed for clinical use. Yet, several of the new compounds which have been recently described appear to be superior to AZT in one or another aspect: i.e. D4T, which is markedly less toxic for the bone marrow (granulocyte-monocyte progenitor cells)

than AZT (Mansuri et al., 1989); *PMEA*, which has markedly greater anti-retrovirus potency in vivo than AZT (Balzarini et al., 1989b); and *sulfated polymers* (i.e. polysaccharides) which block syncytium formation between HIV-infected and uninfected cells, whereas dideoxynucleosides such as AZT are unable to do so (M. Baba, D. Schols, R. Pauwels and E. De Clercq, unpublished data, 1989). As explained above, the fusion between infected and uninfected cells is accompanied by a selective destruction of the uninfected cells, and this phenomenon may account for the dramatic depletion of CD4<sup>+</sup> T-lymphocytes in AIDS patients. The fact that the sulfated polymers inhibit this process, whereas AZT does not, may make the sulfated polymers therapeutically advantageous.

# Acknowledgements

The original investigations were supported by grants from the AIDS Basic Research Program of the European Community, the Belgian Fonds voor Geneeskundig Wetenschappelijk Onderzoek (projects no. 3.0040.83 and no. 3.0097.87), the Belgian Geconcerteerde Onderzoeksacties (project no. 85/90–79) and Janssen Pharmaceutica. I thank Christiane Callebaut and Laurent Palmaerts for their fine editorial help.

#### References

- Baba, M., Pauwels, R., Balzarini, J., Herdewijn, P. and De Clercq, E. (1987a) Selective inhibition of human immunodeficiency virus (HIV) by 3'-azido-2',3'-dideoxyguanosine in vitro. Biochem. Biophys. Res. Commun. 145, 1080-1086.
- Baba, M., Pauwels, R., Balzarini, J., Herdewijn, P., De Clercq, E. and Desmyter, J. (1987b) Ribavirin antagonizes inhibitory effects of pyrimidine 2',3'-dideoxynucleosides but enhances inhibitory effects of purine 2',3'-dideoxynucleosides on replication of human immunodeficiency virus in vitro. Antimicrob. Agents Chemother. 31, 1613–1617.
- Baba, M., Pauwels, R., Herdewijn, P., De Clercq, E., Desmyter, J. and Vandeputte, M. (1987c) Both 2',3'-dideoxythymidine and its 2',3'-unsaturated derivative (2',3'-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro. Biochem. Biophys. Res. Commun. 142, 128–134.
- Baba, M., Nakajima, M., Schols, D., Pauwels, R., Balzarini, J. and De Clercq, E. (1988a) Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. Antiviral Res. 9, 335-343.
- Baba, M., Pauwels, R., Balzarini, J., Arnout, J., Desmyter, J. and De Clercq, E. (1988b) Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA 85, 6132-6136.
- Baba, M., Schols, D., Pauwels, R., Balzarini, J. and De Clercq, E. (1988c) Fuchsin acid selectively inhibits human immunodeficiency virus (HIV) replication in vitro. Biochem. Biophys. Res. Commun. 155, 1404-1411.
- Baba, M., Snoeck, R., Pauwels, R. and De Clercq, E. (1988d) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob. Agents Chemother. 32, 1742–1745.
- Baba, M., Schols, D., Nakashima, H., Pauwels, R., Parmentier, G., Meijer, D.K.F. and De Clercq,

- E. (1989a) Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro. J. Acquir. Immune Deficiency Syndromes, in press.
- Baba, M., Schols, D., Pauwels, R., Balzarini, J., De Clercq, E., van Boeckel, C.A.A., van Dedem, G.W.K., Kraayeveld, N.A., Ottenheijm, H.C.J. and den Hollander, F.C. (1989b) Novel sulfated polysaccharides: dissociation of anti-HIV activity from anti-thrombin activity. FASEB J. 3, Abstracts (Part II), Abstract 6135.
- Balzarini, J., Mitsuya, H., De Clercq, E. and Broder, S. (1986a) Comparative inhibitory effects of suramin and other selected compounds on the infectivity and replication of human T-cell lymphotropic virus (HTLV-III)/lymphadenopathy-associated virus (LAV). Int. J. Cancer 37, 451–457.
- Balzarini, J., Mitsuya, H., De Clercq, E. and Broder, S. (1986b) Aurintricarboxylic acid and Evans Blue represent two different classes of anionic compounds which selectively inhibit the cytopathogenicity of human T-cell lymphotropic virus type III/lymphadenopathy-associated virus. Biochem. Biophys. Res. Commun. 136, 64–71.
- Balzarini, J., Pauwels, R., Herdewijn, P., De Clercq, E., Cooney, D.A., Kang, G.-J., Dalal, M., Johns, D.G. and Broder, S. (1986c) Potent and selective anti-HTLV-III/LAV activity of 2',3'-dideoxycytidinene, the 2',3'-unsaturated derivative of 2',3'-dideoxycytidine. Biochem. Biophys. Res. Commun. 140, 735-742.
- Balzarini, J., Cooney, D.A., Dalal, M., Kang, G.-J., Cupp, J.E., De Clercq, E., Broder, S. and Johns, D.G. (1987a) 2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleoside synthesis. Mol. Pharmacol. 32, 798–806.
- Balzarini, J., Kang, G.-J., Dalal, M., Herdewijn, P., De Clercq, E., Broder, S. and Johns, D.G. (1987b) The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: a comparison with their parental 2',3'-dideoxyribonucleosides. Mol. Pharmacol. 32, 162–167.
- Balzarini, J., Pauwels, R., Baba, M., Robins, M.J., Zou, R., Herdewijn, P. and De Clercq, E. (1987c) The 2',3'-dideoxyriboside of 2,6-diaminopurine selectively inhibits human immunodeficiency virus (HIV) replication in vitro. Biochem. Biophys. Res. Commun. 145, 269–276.
- Balzarini, J., Robins, M.J., Zou, R., Herdewijn, P. and De Clercq, E. (1987d) The 2',3'-dideoxyriboside of 2,6-diaminopurine and its 2',3'-didehydro derivative inhibit the deamination of 2',3'-dideoxyadenosine, an inhibitor of human immunodeficiency virus (HIV) replication. Biochem. Biophys. Res. Commun. 145, 277–283.
- Balzarini, J., Baba, M., Pauwels, R., Herdewijn, P. and De Clercq, E. (1988a) Anti-retrovirus activity of 3'-fluoro- and 3'-azido-substituted pyrimidine 2',3'-dideoxynucleoside analogues. Biochem. Pharmacol. 37, 2847–2856.
- Balzarini, J., Baba, M., Pauwels, R., Herdewijn, P., Wood, S.G., Robins, M.J. and De Clercq, E. (1988b) Potent and selective activity of 3'-azido-2,6-diaminopurine-2',3'-dideoxyriboside, 3'-fluoro-2,6-diaminopurine-2', 3'-dideoxyriboside, and 3'-fluoro-2',3'-dideoxyguanosine against human immunodeficiency virus. Mol. Pharmacol. 33, 243-249.
- Balzarini, J., Pauwels, R., Baba, M., Herdewijn, P., De Clercq, E., Broder, S. and Johns, D.G. (1988c) The in vitro and in vivo anti-retrovirus activity, and intracellular metabolism of 3'-azido-2',3'-dideoxythymidine and 2',3'-dideoxycytidine are highly dependent on the cell species. Biochem. Pharmacol. 37, 897–903.
- Balzarini, J., Herdewijn, P. and De Clercq, E. (1989a) Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine (D4T) and 3'-azido-2',3'-dideoxythymidine (AZT), two potent anti-HIV compounds. J. Biol. Chem., in press.
- Balzarini, J., Naesens, L., Herdewijn, P., Rosenberg, I., Holý, A., Pauwels, R., Baba, M., Johns, D.G. and De Clercq, E. (1989b) Marked in vivo anti-retrovirus activity of 9-(2-phosphonylmethoxyethýl)adenine, a selective anti-HIV agent. Proc. Natl. Acad. Sci. USA, 86, 332-336.
- Balzarini, J., Van Aerschot, A., Herdewijn, P. and De Clercq, E. (1989c) 5-Chloro-substituted derivatives of 2',3'-didehydro-2',3'-dideoxyuridine, 3'-fluoro-2',3'-dideoxyuridine and 3'-azido-2',3'-dideoxyuridine as anti-HIV agents. Biochem. Pharmacol., 38, 869–874.
- Balzarini, J., Van Aerschot, A., Pauwels, R., Baba, M., Schols, D., Herdewijn, P. and De Clercq, E. (1989d) 5-Halogeno-3'-fluoro-2',3'-dideoxyuridines as inhibitors of human immunodeficiencyvirus (HIV): potent and selective anti-HIV activity of 3'-fluoro-2',3'-dideoxy-5-chlorouridine. Mol. Pharmacol., in press.

- Bazin, H., Chattopadhyaya, J., Datema, R., Ericson, A.-C., Gilljam, G., Johansson, N.G., Hansen, J., Koshida, R., Moelling, K., Öberg, B., Remaud, G., Stening, G., Vrang, L., Wahren, B. and Wu, J.C. (1989) An analysis of the inhibition of replication of HIV and MULV by some 3'-blocked pyrimidine analogs. Biochem. Pharmacol. 38, 109-119.
- Biesert, L., Suhartono, H., Winkler, I., Meichsner, C., Helsberg, M., Hewlett, G., Klimetzek, V., Mölling, K., Schlumberger, H.-D., Schrinner, E., Brede, H.-D. and Rübsamen-Waigmann, H. (1988) Inhibition of HIV and virus replication by polysulphated polyxylan: HOE/BAY 946, a new antiviral compound. AIDS 2, 449-457.
- Chu, C.K., Schinazi, R.F., Arnold, B.H., Cannon, D.L., Doboszewski, B., Bhadti, V.B. and Gu, Z. (1988) Comparative activity of 2',3'-saturated and unsaturated pyrimidine and purine nucleosides against human immunodeficiency virus type 1 in peripheral blood mononuclear cells. Biochem. Pharmacol. 37, 3543-3548.
- De Clercq, E. (1979) Suramin: a potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett. 8, 9-22.
- De Clercq, E. (1986) Chemotherapeutic approaches to the treatment of the acquired immune deficiency syndrome (AIDS). J. Med. Chem. 29, 1561-1569.
- De Clercq, E. (1987a) New selective antiviral agents active against the AIDS virus. Trends Pharmacol. Sci. (TIPS) 8, 339-345.
- De Clercq, E. (1987b) Perspectives for the chemotherapy of AIDS. Anticancer Res. 7, 1023-1038.
- De Clercq, E. (1987c) Suramin in the treatment of AIDS: mechanism of action. Antiviral Res. 7, 1-10.
- De Clercq, E. (1988) Chemotherapeutic approach of AIDS. Verh. K. Acad. Geneeskd. Belg. 50, 166-217.
- De Clercq, E. (1989a) Molecular targets of chemotherapeutic agents against the human immunodeficiency virus. In: G.G. Jackson, H.D. Schlumberger and H.J. Zeiler (Eds), Perspectives in Antiinfective Therapy, pp. 255-267. Vieweg & Sohn, Braunschweig/Wiesbaden.
- De Clercq, E. (1989b) Activity of sulfated polysaccharides against the human immunodeficiency virus. In: H. van der Groot, L. Pallos and H. Timmerman (Eds), Trends in Medical Chemistry '88, pp. 729–742. Elsevier Science Publishers.
- De Clercq, E., Holý, A., Rosenberg, I., Sakuma, T., Balzarini, J. and Maudgal, P.C. (1986) A novel selective broad-spectrum anti-DNA virus agent. Nature (London) 323, 464-467.
- De Clercq, E., Sakuma, T., Baba, M., Pauwels, R., Balzarini, J., Rosenberg, I. and Holý, A. (1987) Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res. 8, 261–272.
- De Clercq, E., Van Aerschot, A., Herdewijn, P., Baba, M., Pauwels, R. and Balzarini, J. (1989) Anti-HIV-1 activity of 2',3'-dideoxynucleoside analogues: structure-activity relationship. Nucleosides and Nucleotides, in press.
- De Somer, P., De Clercq, E., Billiau, A., Schonne, E. and Claesen, M. (1968a) Antiviral activity of polyacrylic and polymethacrylic acids. I. Mode of action in vitro. J. Virol. 2, 878–885.
- De Somer, P., De Clercq, E., Billiau, A., Schonne, E. and Claesen, M. (1968b) Antiviral activity of polyacrylic and polymethacrylic acids. II. Mode of action in vivo. J. Virol. 2, 886-893.
- Faber, V., Dalgleish, A.G., Newell, A. and Malkovsky, M. (1987) Inhibition of HIV replication in vitro by fusidic acid. Lancet ii, 827–828.
- Furman, P.A., Fyfe, J.A., St. Clair, M.H., Weinhold, K., Rideout, J.L., Freeman, G.A., Nusinoff Lehrman, S., Bolognesi, D.P., Broder, S., Mitsuya, H. and Barry, D.W. (1986) Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. USA 83, 8333-8337.
- Givens, J.F. and Manly, K.F. (1976) Inhibition of RNA-directed DNA polymerase by aurintricarboxylic acid. Nucleic Acids Res. 3, 405–418.
- Hamamoto, Y., Nakashima, H., Matsui, T., Matsuda, A., Ueda, T. and Yamamoto, N. (1987) Inhibitory effect of 2',3'-didehydro-2',3'-dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob. Agents Chemother. 31, 907-910.
- Hao, Z., Cooney, D.A., Hartman, N.R., Perno, C.F., Fridland, A., DeVico, A.L., Sarngadharan, M.G., Broder, S. and Johns, D.G. (1988) Factors determining the activity of 2',3'-dideoxynucleosides in suppressing human immunodeficiency virus in vitro. Mol. Pharmacol. 34, 431-435.

- Haseltine, W.A. (1988) Replication and pathogenesis of the AIDS virus. J. Acquir. Immune Deficiency Syndromes 1, 217-240.
- Herdewijn, P., Balzarini, J., De Clercq, E., Pauwels, R., Baba, M., Broder, S. and Vanderhaeghe, H. (1987) 3'-Substituted 2',3'-dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) agents. J. Med. Chem. 30, 1270-1278.
- Herdewijn, P., Balzarini, J., Baba, M., Pauwels, R., Van Aerschot, A., Janssen, G. and De Clercq, E. (1988) Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. J. Med. Chem. 31, 2040–2048.
- Ito, M., Baba, M., Sato, A., Pauwels, R., De Clercq, E. and Shigeta, S. (1987a) Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res. 7, 361-367.
- Ito, M., Nakashima, H., Baba, M., Pauwels, R., De Clercq, E., Shigeta, S. and Yamamoto, N. (1987b) Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-III/LAV)]. Antiviral Res. 7, 127-137.
- Ito, M., Baba, M., Hirabayashi, K., Matsumoto, T., Suzuki, M., Suzuki, S., Shigeta, S. and De Clercq, E. (1989a) In vitro activity of mannan sulfate, a novel sulfated polysaccharide, against human immunodeficiency virus type 1 and some other enveloped viruses. Eur. J. Clin. Microbiol. Infect. Diseases, 8, 171-173.
- Ito, M., Sato, A., Hirabayashi, K., Tanabe, F., Shigeta, S., Baba, M., De Clercq, E., Nakashima, H. and Yamamoto, N. (1989b) Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). Antiviral Res. 10, 279-288.
- Lin, T.-S., Schinazi, R.F., Chen, M.S., Kinney-Thomas, E. and Prusoff, W.H. (1987a) Antiviral activity of 2',3'-dideoxycytidin-2'-ene (2',3'-dideoxy-2',3'-didehydrocytidine) against human immunodeficiency virus in vitro. Biochem. Pharmacol. 36, 311-316.
- Lin, T.-S., Schinazi, R.F. and Prusoff, W.H. (1987b) Potent and selective in vitro activity of 3'-deoxythymidin-2'-ene (3'-deoxy-2',3'-didehydrothymidine) against human immunodeficiency virus. Biochem. Pharmacol. 36, 2713–2718.
- Lin, T.-S., Guo, J.-Y., Schinazi, R.F., Chu, C.K., Xiang, J.-N. and Prusoff, W.H. (1988) Synthesis and antiviral activity of various 3'-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1, HTLV-III/LAV). J. Med. Chem. 31, 336-340.
- Lloyd, G., Atkinson, T. and Sutton, P.M. (1988) Effect of bile salts and of fusidic acid on HIV-1 infection of cultured cells. Lancet i, 1418–1421.
- Mansuri, M.M., Starrett, J.E. Jr., Ghazzouli, I., Hitchcock, M.J.M., Sterzycki, R.Z., Brankovan, V., Lin, T.-S., August, E.M., Prusoff, W.H., Sommadossi, J.-P. and Martin, J.C. (1989) 1-(2,3-Dideoxy-β-glycero-pent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent. J. Med. Chem., 32, 461–466.
- Mitsuya, H. and Broder, S. (1986) Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideox-ynucleosides. Proc. Natl. Acad. Sci. USA 83, 1911–1915.
- Mitsuya, H., Popovic, M., Yarchoan, R., Matsushita, S., Gallo, R.C. and Broder, S. (1984) Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science 226, 172-174.
- Mitsuya, H., Weinhold, K.J., Furman, P.A., St. Clair, M.H., Nusinoff Lehrman, S., Gallo, R.C., Bolognesi, D., Barry, D.W. and Broder, S. (1985) 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 82, 7096-7100.
- Mitsuya, H., Looney, D.J., Kuno, S., Ueno, R., Wong-Staal, F. and Broder, S. (1988) Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240, 646-649.
- Nakashima, H., Yoshida, O., Baba, M., De Clercq, E. and Yamamoto, N. (1989) Anti-HIV activity of dextran sulfate as determined under different experimental conditions. Antiviral Res. 11, 233-246.
- Pauwels, R., De Clercq, E., Desmyter, J., Balzarini, J., Goubau, P., Herdewijn, P., Vanderhaeghe, H. and Vandeputte, M. (1987) Sensitive and rapid assay on MT-4 cells for the detection of antiviral compounds against the AIDS virus. J. Virol. Methods 16, 171-185.

- Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J. and De Clercq, E. (1988a) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20, 309-321.
- Pauwels, R., Baba, M., Schols, D., Balzarini, J., Desmyter, J. and De Clercq, E. (1989) Differential antiretroviral activity of dextran sulfate, pentosan polysulfate and heparin against HIV-1 (HTLV-III<sub>B</sub>) and HIV-2 (LAV-2 ROD) in MT-4 cells. Abstract, Vth International Conference on AIDS, Montreal, June 4-9, 1989.
- Pompei, R., Flore, O., Marccialis, M.A., Pani, A. and Loddo, B. (1979) Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature (London) 281, 689-690.
- Richman, D.D., Mitsuya, H., Broder, S. and Hostetler, K.Y. (1988) Fusidic acid, HIV, and host cell toxicity. Lancet i, 1051–1052.
- Ruprecht, R.M., Rossoni, L.D., Haseltine, W.A. and Broder, S. (1985) Suppression of retroviral propagation and disease by suramin in murine systems. Proc. Natl. Acad. Sci. USA 82, 7733-7737.
- Schols, D., Baba, M., Pauwels, R. and De Clercq, E. (1989a) Flow cytometric method to demonstrate whether anti-HIV-1 agents inhibit virion binding to T4<sup>+</sup> cells. J. Acquir. Immune Deficiency Syndromes. 2, 10–15.
- Schols, D., Baba, M., Pauwels, R., Desmyter, J. and De Clercq, E. (1989b) Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor. Proc. Natl. Acad. Sci. USA, 2, 3322–3326.
- Schols, D., Pauwels, R., Baba, M., Desmyter, J. and De Clercq, E. (1989c) Syncytium formation and destruction of CD4<sup>+</sup> bystander cells cocultured with persistently HIV-infected T-cells, as demonstrated by flow cytometry. J. Gen. Virol., in press.
- Snoeck, R., Sakuma, T., De Clercq, E., Rosenberg, I. and Holý, A. (1988) (S)-1-(3-Hydroxy-2-phosphonylmethoxypropyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother. 32, 1839–1844.
- Terry, B.J., Mazina, K.E., Tuomari, A.V., Haffey, M.L., Hagen, M., Feldman, A., Slusarchyk, W.A., Young, M.G., Zahler, R. and Field, A.K. (1988) Broad-spectrum antiviral activity of the acyclic guanosine phosphate (R,S)-HPMPG. Antiviral Res. 10, 235–252.
- Ueno, R. and Kuno, S. (1987) Dextran sulphate, a potent anti-HIV agent in vitro having synergism with zidovudine. Lancet i, 1379.
- Van Aerschot, A., Herdewijn, P., Balzarini, J., Pauwels, R. and De Clercq, E. (1989) 3'-Fluoro-2',3'-dideoxy-5-chlorouridine: most selective anti-HIV-1 agent among a series of new 2'- and 3'-fluorinated 2',3'-dideoxynucleoside analogues. J. Med. Chem., in press.
- Votruba, I., Bernaerts, R., Sakuma, T., De Clercq, E., Merta, A., Rosenberg, I. and Holý, A. (1987) Intracellular phosphorylation of broad-spectrum anti-DNA virus agent (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and inhibition of viral DNA synthesis. Mol. Pharmacol. 32, 524-529.